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Abstract

This article presents a simple modification to Greengard’s fast multipole
method that yields essentially O(Np3) running time for pth-order N -
particle calculations. This method is compared to other O(Np3) methods
that have been proposed.

1 Introduction

Fast multipole methods enable accurate and efficient calculations of Coulombic
energies and forces in particle systems: The dominant part of the algorithm
scales linearly with the number of particles, N , rather than N 2 as in direct
summation.1 It has important implications for a wide range of applications,
including molecular simulations, N -body simulations in celestial mechanics, and
particle methods in fluid mechanics,2 and has received much attention in the
literature [2, 4, 5, 10, 12]. However, in Greengard’s original formulation [5],
a pth-order method requires O(Np4) operations in the multipole calculation
stage, limiting the method’s usefulness in problems requiring intermediate to
high accuracy.

Fast multipole methods rely extensively on “translation operators” to shift
the centers of multipole and local (Taylor) expansions. These operations, if
implemented in a straightforward way, require O(p4) operations on each invo-
cation. In [11], White and Head-Gordon introduced the use of Wigner rotation
matrices to reduce the running time of each translation (and hence that of the
fast multipole algorithm) from O(p4) to O(p3), and in [2], Cheng, Greengard,
and Rokhlin present yet another O(p3) algorithm, based on “plane wave” ex-
pansions, that is faster by a constant factor and provides higher accuracy. How-
ever, the plane wave expansion of Cheng et. al. is rather complicated, while
White and Head-Gordon’s rotation-based method, though simple conceptually,
requires some care to apply correctly and effectively.

1As observed by Cheng, Greengard, and Rokhlin in [2], most multipole methods involve a
“loading” stage that partitions particles into an octree structure. While the asymptotic worst-
case running time of this stage is generally O(N log N), it is the O(N) multipole computation
stage that, in practice, dominates the total running time.

2Please see Greengard [5] for more extensive referenes.
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In this article, a new O(p3) algorithm, based on simple recurrence relations
for spherical harmonics, due to Pohorille [8], is presented. While it has the same
asymptotic running time as that of plane wave or rotation-based methods, this
method is, in our opinion, easier to implement and understand, even though it
does not offer all the benefits of plane wave expansions.

The rest of the paper goes like this: Section 2 reviews the basic theory under-
lying multipole expansions, Section 3 summarizes relevant recurrence relations
and uses them to develop a new O(p3) algorithm, and Section 4 compares our
new method to other O(p3) methods and discusses some implementation issues.
Readers interested in the details of my implementation will have to wait for [7].

2 Multipole Expansions

This paper follows the notations of White and Head-Gordon [10], which is more
transparent and compact than that of Greengard [5]. Relevant results regard-
ing spherical harmonics and multipole expansions are only summarized here;
interested readers can consult Arfken [1] or Jackson [6] for details. This paper
concentrates on the theory of multipole expansions and their translation oper-
ators, and anyone interested in the use of multipole expansions and translation
operators in the fast multipole method should see White and Head-Gordon [10],
Cheng, Greengard, and Rokhlin [2], or Figueirido et. al. [4].

2.1 Basic theory

2.1.1 Multipole expansions

Multipole expansions are a standard tool in the study of electrostatics [6]. They
are based on the observation that

1

|r − s|
=

∞
∑

l=0

Pl(cos γ) ·
rl

sl+1
, (1)

where the Pl are Legendre polynomials and γ denotes the angle between r and
s. Upon rotating the coordinate system, we get

1

|r − s|
=

∞
∑

l=0

l
∑

m=−l

(l −m)!

(l +m)!
· Pl,m(cos θr) · Pl,m(cos θs) · e

im(φs−φr), (2)

where r = (r, θr, φr) and s = (s, θs, φs) in spherical coordinates, and Pl,m de-
notes the associated Legendre function of order (l,m) (cf. Arfken [1]). Now,
define

Ol,m(r) =
rl

(l +m)!
· Pl,m(cos θr) · e

−imφr (3)

and

Ml,m(s) =
(l −m)!

sl+1
· Pl,m(cos θs) · e

imφs (4)
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so that Equation 2 becomes

1

|r − s|
=

∞
∑

l=0

l
∑

m=−l

Ml,m(s) ·Ol,m(r). (5)

Suppose now we are given a cluster of N charges with positions {ri} and charges
{qi}, and we wish to compute the electrostatic potential

U(r) =

N
∑

i=1

qi

|r − ri|
(6)

generated by the charge cluster at some point r far away from the center r0 of
the cluster. Define

Ôl,m(r0) =

N
∑

i=1

qi ·Ol,m(ri − r0) (7)

and observe that

U(r) =
∞
∑

l=0

l
∑

m=−l

Ml,m(r − r0) · Ôl,m(r0). (8)

The coefficients Ôl,m(r0) are the multipole coefficients for the potential U , and
the expansion (8) is the multipole expansion of U . In electrostatic problems, the
potential contains all the relevant information about the charges, and hence we
may also speak of multipole coefficients for the system of charges {(qi, ri)}.

Note that the series in (8) converges if and only if |r − r0| is greater than
max{|ri−r0|}, so multipole expansions of electrostatic potentials are essentially
“far-field” expansions: They give series expansions, centered at a given point
r0, for the effects one would observe when standing far away from r0. The fast
multipole method exploits multipole expansions to represent far-field effects and
reserves direction summation, a relatively expensive operation, for near-field
interactions.

2.1.2 Local expansions

In writing down Equation 8, we used Equation 2 to represent the electrostatic
potential generated at s by a unit charge at r. But we can also use (2) to
represent the potential generated at r by a unit charge at s: That is,

U(r) =

∞
∑

l=0

l
∑

m=−l

M̂l,m(r0) · Ol,m(r − r0) (9)

where we can define M̂l,m(r0) by

M̂l,m(r0) =
N

∑

i=1

qi ·Ml,m(ri − r0). (10)
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This is dual to the multipole expansion (8), and is the Taylor expansion of U
about r0: In contrast to multipole expansion (8), this series converges if and
only if |r − r0| is smaller than min{|ri − r0|}. Like the multipole expansion, it
is again a far-field expansion. Unlike multipole expansions, the charge cluster
must be far away from r0 and the point r close to r0, rather than the other
way around. In this context, Taylor expansions (9) are often known as a local

expansions (and their coefficients local coefficients) for U about r0.
In fast multipole methods, multipole expansions (as in (8)) are used as in-

termediate representations for computing local expansions. The evaluation of
the potential U is actually done through local Taylor expansions (9).

2.1.3 Conjugate symmetry

Readers familiar with quantum mechanics or, equivalently, representations of
classical Lie groups, will recognize that multipole expansions involve so-called
solid harmonics, which are closely related to eigenfunctions of quantum me-
chanical angular momentum operators [9]. It is well known that the associated
Legendre functions Pl,m (and hence Ol,m and Ml,m) are nonzero only for l ≥ 0
and |m| ≤ l. It is also useful to note (see [1]) that

Pl,−m(x) = (−1)m ·
(l −m)!

(l +m)!
· Pl,m(x) (11)

so that
Ol,−m = (−1)mOl,m (12)

and
Ml,−m = (−1)mMl,m (13)

hold. (Overline denotes complex conjugation.) This symmetry saves storage
costs by nearly a factor of two in implementations of multipole methods.

2.2 Translation operators

The fast multipole method relies heavily on the following identities:

1. Multipole-to-multipole translation:

Ol,m(r + s) =
l

∑

j=0

j
∑

k=−j

Ol−j,m−k(s) ·Oj,k(r) (14)

2. Local-to-local translation:

Ml,m(r − s) =

∞
∑

j=l

j
∑

k=−j

Oj−l,k−m(s) ·Mj,k(r), (15)
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3. Multipole-to-local translation:

Ml,m(r − s) = (−1)l

∞
∑

j=0

j
∑

k=−j

Mj+l,k+m(s) · Oj,k(r), (16)

References [5, 2, 10, 11] contain more details regarding these identities, but
readers should keep in mind that the third equation, as it appears in [10, 11],
does not have the phase factor (−1)l and is therefore incorrect.3) Also, the first
two equations (multipole-to-multipole and local-to-local) can sometimes involve
to coefficients Ol′ ,m′ with |m′| > l′: Such coefficients are always set to zero.

These linear operators derive their name from the fact that they can be used
to shift the centers of multipole and local expansions.4 For example, suppose
we have, as before, a cluster of particles with charge {qi} and positions {ri}.
Let U , as before, denote the electrostatic potential generated by these charges,
and suppose r0 and r′0 are points near the center of the cluster while r is a point
far away from the cluster. We then have two multipole expansions:

U(r) =
∞
∑

l=0

l
∑

m=−l

Ml,m(r − r0) · Ôl,m(r0)

=

∞
∑

l=0

l
∑

m=−l

Ml,m(r − r′0) · Ôl,m(r′0)

where Ôl,m is defined by (7).
We can then convert between the two expansions using

Ôl,m(r′0) =

l
∑

j=0

j
∑

k=−j

Ol−j,m−k(r0 − r′0) · Ôj,k(r0), (17)

since (ri−r0)+(r0−r′0) = (ri−r′0) (see the definition of Ôl,m in (7)). Similarly,
we can translate or shift local expansions between different centers, and convert
multipole expansions from a nearby center to a local expansion about a distant
point.

In multipole calculations, the user typically begins by choosing a value of p
for which the approximation gives sufficient accuracy. Then, the infinite series in

3There are simple tricks to check for certain types of errors in these translation operators.
For example, Mj,k(s) contains s−(j+1) and the translated result needs to contain |r−s|−(l+1).
This tells us that, by essentially dimensional analysis, the translation operator should have
elements that scale like rj−l, so that −(j + 1) + (j − l) = −(l + 1) (rather than l − j or other
mistakes one might make). One can similarly check that the exponential phase factors have
exponents that “add up.” Unfortunately, this kind of analysis does not catch the kind of error
where the factor (−1)l was omitted.

4The words “translate” and “shift,” in this context, are used interchangeably, and will
always mean shifting the center of a multipole or local expansion from one point to another,
or to convert a multipole expansion to a local one via Equation 16.
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(9) is truncated to retain only terms for which l ≤ p. The translation operators
(15) and (16) are similarly truncated in all caclulations, and it is easy to see
that straightforward evaluation of (14), (15), and (16) requiresO(p4) operations.
Readers interested in careful error analyses should see [2].

3 Faster Translation Operators

3.1 Basic recurrence relations

Associated Legendre functions satisfy a number of useful recurrence relations,
among them:

Pl,l(cos θ) = (2l− 1)!! · sinl θ (18)

(l −m) · Pl,m = (2l− 1) · cos θ · Pl−1,m − (19)

(l +m− 1) · Pl−2,m

Pl,m = (2l− 1) · sin θ · Pl−1,m−1 + Pl−2,m (20)

(l −m)(l −m− 1) · Pl,m = −(2l− 1) · sin θ · Pl−1,m+1 + (21)

(l +m) · (l +m− 1) · Pl−2,m

cos θ · Pl,m = (l −m+ 1) · sin θ · Pl,m−1 + Pl−1,m (22)

sin θ · Pl,m = −(l−m+ 2)(l −m+ 1) · sin θ · Pl,m−2 +

2(m− 1) · Pl−1,m−1 (23)

sin θ · Pl,m = −2(l−m+ 1) · cos θ · Pl,m−1 + (24)

(l −m+ 2)(l −m+ 1) · sin θ · Pl,m−2 +

2l · Pl−1,m−1

(l −m) · cos θ · Pl,m = − sin θ · Pl,m+1 + (l +m) · Pl−1,m (25)

2l · Pl,m = (l +m) · (l +m− 1) · sin θ · Pl−1,m−1 − (26)

sin θ · Pl−1,m+1 + 2(l+m) · cos θ · Pl−1,m

Note that all associated Legendre functions are evaluated at cos θ in the table
above: Pl,m = Pl,m(cos θ). Also, this table contains more recurrences than
necessary, and they are certainly not linearly independent, but the reader may
find this table useful in working with multipole methods.
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Using recurrences (24) and (26) above and the definitions of Ol,m(r, θ, φ)
and Ml,m(r, θ, φ), we get:

2l ·Ol,m = r sin θ · e−iφOl−1,m−1 − (27)

r sin θ · eiφOl−1,m+1 + 2r cos θOl−1,m

and

Ml,m = −2 · cot θ · eiφ ·Ml,m−1 + (28)

ei2φ ·Ml,m−2 +
2l

r sin θ
· eiφ ·Ml−1,m−1.

3.2 Translation operators

Armed with (27) and (28), we can now formulate a faster way to perform trans-
lations.

3.2.1 Multipole-to-multipole translation

Equation 14 states that

Ol,m(r + s) =

l
∑

j=0

j
∑

k=−j

Ol−j,m−k(s) ·Oj,k(r).

It is easy to see that there is some redundancy in the calculations, and here is
one way to exploit this redundancy: Define the partial sums

R
j
l,m =

j
∑

k=−j

Ol−j,m−k(s) ·Oj,k(r) (29)

with 0 ≤ j ≤ l and |m| ≤ l. Then

Ol,m(r + s) =

l
∑

j=0

R
j
l,m (30)

and, from (27), we have

R
j
l,m =

1

2(l − j)

[

s sin θs · e
−iφs ·Rj

l−1,m−1− (31)

s sin θs · e
iφs ·Rj

l−1,m+1 + 2s cos θs · R
j
l−1,m

]

.

This recurrence allows us to compute all the partial sums Rj
l,m, except those

with m = 0, m = l, and m = l − 1. Thus, we need only compute Rj
l,0, R

j
l,l−1

and R
j
l,l for 0 ≤ j ≤ l ≤ p directly, and can compute all other Rj

l,m from

the recurrence relation. Since there are O(p2) initial partial sums to compute
and they each cost O(p), and since it takes O(p3) operations to obtain all the
partial sums using the recurrence relation, this way of performing multipole-to-
multipole translations requires O(p3) operations.
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3.2.2 Local-to-local translation

We can do the same thing with the local-to-local translation operator:

Ml,m(r − s) =
∞
∑

j=l

j
∑

k=−j

Oj−l,k−m(s) ·Mj,k(r),

Define

S
j
l,m =

j
∑

k=−j

Oj−l,k−m(s) ·Mj,k(r) (32)

with 0 ≤ l ≤ j and |m| ≤ l. Then

Ml,m(r − s) =

∞
∑

j=l

S
j
l,m (33)

and, using (27) again, we get

S
j
l,m =

1

2(l − j)

[

s sin θs · e
−iφs · Sj

l+1,m+1− (34)

s sin θs · e
iφs · Sj

l+1,m−1 + 2s cos θs · S
j
l+1,m

]

.

We can use this recurrence relation to compute all the partial sums Sj
l,m except

S
j
l,0 and Sj

p,m (0 ≤ l,m ≤ p). Again, it is easy to see that this requires O(p3)
operations.

3.2.3 Multipole-to-local translation

Finally, let us consider

Ml,m(r − s) = (−1)l

∞
∑

j=0

j
∑

k=−j

Mj+l,k+m(s) ·Oj,k(r),

Define

T
j
l,m =

j
∑

k=−j

Mj+l,k+m(s) ·Oj,k(r) (35)

with 0 ≤ l, 0 ≤ j, and |m| ≤ l. Then

Ml,m(r − s) = (−1)l

∞
∑

j=0

T
j
l,m (36)

and, using (28) this time, we get

T
j
l,m = −2 cot θs · e

iφs · T j
l,m−1 + (37)

ei2φs · T j
l,m−2 +

2(j + l)

s sin θs

· eiφs · T j
l−1,m−1.
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Again, we can use this recurrence relation to compute all the partial sums T j
l,m

except T j
l,0 and T j

l,1.
5 Again, it is easy to see that this requires O(p3) operations.

3.2.4 Vertical multipole-to-local translation

In the recurrence relations for T j
l,m above, we see that sin θs appears in the de-

nominator. This means that, when sin θs = 0 (which corresponds to translating
the center of the expansion along the ẑ-axis), the recurrence is ill-defined. But,
in that case, both the recurrence relation and the translation operator itself
simplify: (16) becomes

Ml,m(r − s) = (−1)l

∞
∑

j=0

(j + l)!

sj+l+1
· Oj,−m(r), (38)

which only takes O(p3) to compute all of the Ml,m.6 In the fast multipole
method, sin θs is never a small number: Either it is zero, or it is sufficiently
large that the recurrence for T j

l,m can be safely used. Thus, it is easy to rewrite
one’s code to take this into account and use the simplified translation operator
whenever sin θs = 0.

One may find the need to handle this special case rather unsatisfying, and
may wish to find recurrence relations which do not involve dividing by sin θs or
cos θs. Indeed, it is possible to derive such a recurrence relation for the T j

l,m:
For example, it is true that

T
j
l,m =

s sin θs

2(j + l + 1)
· e−iφs · T j

l+1,m+1 − (39)

s sin θs

2(j + l + 1)
· eiφs · T j

l+1,m−1 +
s cos θs

j + l + 1
· T j

l+1,m

holds. But numerical experiments and simple analyses both seem to indicate
that this particular recurrence relation is numerically unstable, and I was unable
to find a stable recurrence of the desirable form. Furthermore, it is not difficult
in practice to write the multipole-to-local translation routines so that it always
uses the correct form of the translation operator.

4 Implementation Issues & Future Work

4.1 Comparisons with other methods

As stated in the Introduction, White and Head-Gordon [11] and Cheng et.

al. [2] have both proposed and implemented O(p3) versions of the translation

5Recall that, because of the conjugate symmetry Ol,−m = (−1)mOl,m, we need only
compute multipole and local coefficients for 0 ≤ m ≤ l.

6Note that this applies only when s = sẑ, that is, when we are shifting the center of
the expansion upwards. It is relatively easy, however, to work out a similar expression when
shifting downwards.
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operator, with extensive timing tests. Our method is closer in accuracy and
speed to that of White and Head-Gordon: Cheng et. al. use a fundamentally
different representation of far-field effects to perform translations.

Compared to the method of White and Head-Gordon, our method should
provide the same accuracy and comparable speed, since they are mathematically
equivalent and involve only a different order of operations. We feel that this
method is simpler conceptually, as it requires only elementary mathematics, but
that is, in a way, a matter of taste.

On the other hand, the method of Cheng et. al. does provide real im-
provements over our approach and that of White and Head-Gordon: It is more
accurate and hence able to perform accurate translations between boxes7 that
are only separated by one box instead of two.8 This, in turn, drastically re-
duces the number of multipole-to-local translations one must perform, which
is invoked much more often than its multipole-to-multipole and local-to-local
counterparts in typical fast multipole calculations. On the other hand, their
method is more complicated, as it requires three representations of far-field ef-
fects instead of two, and the cost in software development time may be serious.
In addition, parallel implementations are desirable in many applications, and
in such cases the optimal method may depend strongly on the architecture and
method of parallelization: the method of Cheng et. al. may very well be more
efficient, but one cannot be absolutely sure until all methods have been imple-
mented and compared. Unfortunately, that comparison is beyond the scope of
this project.

4.2 Optimality

The translation operators presented above require O(p3) operations. For mas-
sively parallel applications, however, communications costs often outweigh op-
eration counts. In our case, if information about two charge clusters are stored
in the local caches of different processors and a multipole-to-local translation
is required between these clusters, we would need to transfer (p+ 1)2 numbers
between their corresponding processors. This is the communications cost, for
example, of simply sending the coefficients Ôl,m for 0 ≤ m ≤ l ≤ p.

One may hope to use recurrence relations to first preprocess and “compress”
the information in Ôl,m to reduce communication bandwidth requirements, but
as Eric Darve [3] points out, the fast multipole method strives to represent
far-field effects using the minimum number of degrees of freedom, and thus it
would be difficult to “compress” the information they contain. Furthermore, our
translation operators depend critically on the existence of recurrence relations
that depend only on one index (in our case, l) instead of both indices l and m.
As there is only one such recurrence relation for each index, it is unlikely that

7The fast multipole method partitions a system of charges into clusters or “boxes,” and
these two terms are used interchangeably here.

8If you don’t know what I’m talking about, see the discussion of “well-separated boxes” in
[10].
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this would work. However, no rigorous proof is known at the moment.9

Note that even if one manages to prove the need for O(p2) information,
it does not preclude the possibility of improving the O(p3) running time to
O(ps) for s < 3. Technically, it also does not preclude the possibility of “lossy
compression” of information, but any such scheme would probably be equivalent
to using lower-order expansions.

4.3 Numerical stability

One important remaining issue is that of numerical stability: In tests with
uniform distributions of Coulomb charges, the recurrence relations appeared to
be very stable up to p ≥ 40. But we have not performed tests with highly
non-uniform distributions, nor have we obtained rigorous proofs of stability.

Appendix

This is incomplete, so it sits here:
Arguments utilizing the linear independence of (linear) recurrence relations

can prove that “compression” cannot be done via recurrences. However, I think
an even stronger result is possible: Compression is impossible via any smooth

function (linear or nonlinear).
First, some terminology: Let M denote the space of all possible configura-

tions for N charges in the unit cube: This is a 3N -dimensional manifold. Let V
denote the space of functions f : R3 −→ R with the property that ∆f is a linear
combination of N Dirac delta functions and f vanishes at infinity, and let W
denote the real vector space R(p+1)2 .10 As will be explained below, M formally
represents all possible configurations of N charges in the unit cube [0, 1]3, V
is the space of potentials that they generate, and W is the space of truncated
multipole expansions of these potentials.

We can map M into the vector space V by solving Poisson’s equation

−
1

4π
∆f =

N
∑

i=1

qi · δri

for a given set of positions (r1, . . . , rN ), with the condition that f vanishes at
infinity. This defines a smooth map ι from M into V . Next, by restricting func-
tions f in V to a region outside the cube [0, 1]3, we can use multipole expansions
to represent f uniquely. This allows us to define a projection operator π from
V into W by truncating multipole expansions, and the composite map ψ = π ◦ ι
maps M into R(p+1)2 .

The key issue is: What is the rank of the derivative dψ of ψ? If it has full
rank, for example, then whenever 3N > (p+ 1)2, ψ would be a submersion and

9But see the appendix.
10∆ denotes the Laplacian operator ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
.
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therefore cannot factor through a lower-dimensional manifold. This would mean
that there are no smooth transformations that can map all multipole coefficients
into fewer real variables than (p + 1)2 and still retain all the information. In
terms of communications cost, O(p2) would then be the best one can do.

It should not be too difficult to prove some rigorous results regarding the rank
of the map ψ, but that has not yet been done. Explicit numerical computation
of singular values of dψ for N ≈ 50 and p ≈ 7 indicate that dψ generally has
rank (p + 1)2 − 1, which means that whenever 3N + 1 > (p + 1)2 it would be
impossible to compress the information. Results of calculating singular values
with N ≈ 256 and p ≈ 30 are more ambiguous.
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